1 Integrating Irreducible Quadratics

1.1 Concepts

1. For partial fractions, we often end up with something of the form $\frac{A x+B}{x^{2}+b x+c}$ where the bottom is an irreducible polynomial, one that does not have real roots, and we need to integrate it. We will always end up with a $\ln x^{2}+b x+c$ term and an arctan term. In order to split this, let $u=x^{2}+b x+c$ so $d u=2 x+b$ and write $A x+B=C d u+D$. Then you need to be able to complete the square and use the fact that

$$
\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan (x / a)+C .
$$

1.2 Example

2. Find $\int \frac{2 x+3}{4 x^{2}+4 x+5} d x$.

1.3 Problems

3. Find $\int \frac{4 x+1}{x^{2}+4 x+8} d x$.
4. Find $\int \frac{3 x+4}{x^{2}-2 x+10} d x$.

1.4 Extra Problems

5. Find $\int \frac{x-3}{x^{2}-4 x+5} d x$.
6. Find $\int \frac{5-x}{x^{2}-x+1} d x$.

2 Determinants and Inverses

2.1 Concepts

7. There are 2 ways to calculate the determinant of a 3×3 matrix $\left(\begin{array}{lll}b_{1} & b_{2} & b_{3} \\ b_{4} & b_{5} & b_{6} \\ b_{7} & b_{8} & b_{9}\end{array}\right)$. The first is expansion along the first row to get the determinant is $b_{1}\left|\begin{array}{ll}b_{5} & b_{6} \\ b_{8} & b_{9}\end{array}\right|-b_{2}\left|\begin{array}{ll}b_{4} & b_{6} \\ b_{7} & b_{9}\end{array}\right|+b_{3}\left|\begin{array}{ll}b_{4} & b_{5} \\ b_{7} & b_{8}\end{array}\right|$. The other is to use the diagonal method to get $b_{1} b_{5} b_{9}+b_{2} b_{6} b_{7}+b_{3} b_{4} b_{8}-b_{1} b_{6} b_{8}-b_{2} b_{4} b_{9}-$ $b_{3} b_{5} b_{7}$.
We can determine the number of solutions to an equation $A \vec{x}=\vec{b}$ by the determinant of A and that is given below.

$\operatorname{det}(A)$	$\neq 0$	$=0$
Number of Solutions	1	0 or ∞

2.2 Examples

8. Find the determinant of $\left|\begin{array}{ccc}3 & 2 & 3 \\ -1 & 5 & -3 \\ 7 & -1 & -1\end{array}\right|$.

2.3 Problems

9. True False It is possible for $A \vec{x}=\overrightarrow{0}$ to have no solutions.
10. True False If we know that $A \vec{x}=\vec{b}$ has no solutions, then we know what $\operatorname{det}(A)$ is.
11. Let $A=\left(\begin{array}{ccc}2 & 4 & -1 \\ 2 & 2 & 5 \\ 6 & 8 & 9\end{array}\right)$. What is $\operatorname{det}(A)$? How many solutions that $A \vec{x}=\overrightarrow{0}$ have?
12. Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 5 & 1 & 3 \\ 2 & 2 & 4\end{array}\right)$. What is $\operatorname{det}(A)$? How many solutions does $A \vec{x}=\overrightarrow{0}$ have?
13. Find the solution to $x+2 y=3$ and $4 x+5 y=6$ using matrix vector form.
14. Write $x+y=10, y+z=5, x+z=-1$ in matrix vector form. How many solutions does it have?
